System for monitoring adaptation to climate change in Latvia

Andris Vīksna
Head of the Forecasting and Climate Department
Latvian Environment, Geology and Meteorology Centre
IDENTIFICATION OF CC IMPACTS (RISKS AND GAINS) ON MAIN SECTORS

Sectors

- Health and welfare
- Water management and infrastructure
- Construction and building
- Biodiversity
- Forestry
- Transport infrastructure
- Water management and infrastructure
- Construction and building
- Biodiversity
- Forestry
- Transport infrastructure

Example: Water management and infrastructure

Risks

- Damage to hydropower plants (HPP) built on a big rivers as a result of extreme hydrological conditions;
- Flood caused problems in a water supply and sewage systems;
- Flood caused threat to public and civil engineering infrastructure;
- Threat caused by the coastal erosion to the infrastructure objects near the Baltic Sea and / or the Gulf of Riga;
- Ice congestion and flood damage to private properties

Gains or benefits

- Increase in river flow;
- Changes in the seasonality of river flows and hydroelectric power resources;
- Decrease of the early spring flooding risk
Changes in temperature/precipitation regimes → Increase of icing → Damage to crop fields

Increase of icing → Damage to electr. suppl.infr → Interrupted electricity supply

Increase of icing → Damage to forests

Increase of icing → Damage to properties

Damage to crop fields, Damage to electr. suppl.infr, Interrupted electricity supply, Damage to forests, Damage to properties → Economic losses

CC main Impacts (causes) → Main effects
Past climate data analysis:
- Used observations: average, minimum and maximum air temperature, precipitation, average and maximum wind speed;
- Time period: 1961 – 2010;
- Time resolution: daily values;
- Calculation of 48 climate indices for past climate;
- Trend identification and estimation;
- Past climate and climate indices visualization and interpolation with spatial resolution 10x10 km and taking into account topographical features.
Future climate analysis:

- Future climate change scenarios for the periods: years 2011-2040, years 2041-2070 and years 2071-2100
- Used scenarios: RCP2.6, RCP4.5 and RCP8.5 of IPCC (2013)
- Calculation of 40 climate indices for future climate
- Future climate and climate indices visualization
The average air temperature increases much faster in winter than summer. Also spring has significant air temperature increase during years 1961-2010.

Similar trend is expected in the future. Changes (RCP 8.5) between 2071-2100 and 1961-1990 periods could reach 6-8°C during the winters.
Total amount of precipitation per seasons in period 1961 to 2010

Atmospheric precipitation forecasts by global climate model ensembles (changes, %), period 2071-2100 vs 1961-1990, RCP 8.5 scenario
GIS TOOL FOR INTERACTIVE VISUALIZATION OF CLIMATE DATA

Tool functionality and options:

- Data selection by climatic parameter, scenario, location and time period
- Spatial data visualization as an interpolated map
- Time series visualization for a chosen station as a chart;
- Option to select and download the data and related information
Development of the concept of monitoring system for adaptation to climate change in Latvia for most vulnerable sectors, done in cooperation with experts of 6 scopes:

- Construction and infrastructure planning;
- Agriculture and forestry;
- Civil protection and emergency assistance planning;
- Landscape planning and tourism;
- Biodiversity and ecosystem services;
- Health and prosperity
CONCEPT OF MONITORING SYSTEM

System for monitoring adaptation to climate change

- Climate change monitoring
 - Meteorological parameters
- Gathering of climate observations
 - Chosen climate indices
- Calculation of climate indices from the gathered observations
- Monitoring of climate observations and indices

Adaptation monitoring

- Adaptation indicators
 - e.g. Wildfire data
- Vulnerability assessment, cost and benefit
- Representation of vulnerability as the correlation between climate change and adaptation indicators

Monitoring of adaptation to climate change

Vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity.

1 Climate change, impacts and vulnerability in Europe 2012. An indicator-based report, EEA, Copenhagen, 2012
2 An EU strategy on adaptation to climate change, SWD(2013) 132 final, Brussels 16.4.2013
Obstacles and problems during the project:

- A lack of quantitative indicators / functions as deliverables of the project to be able to replicate / calculate results with existing and new data;
- Indicators often represent points or some parts of the country. It’s complicated to contrast to the grid of climate data;
- Complications to receive 3rd party data. There are no laws providing system for simple data transfer even between institutions under the state supervision;
- Snow data and water level/discharge analysis and projections are critical for more appropriate situation analysis and forecasts.
Monitoring of adaptation to climate change

Elaboration of climate data

Continuous data from round-the-clock stations for meteorological parameters

Interpolation of station data on a 10x10km grid

Calculation and interpolation of climate indices on a 10x10km grid

Conception review:
- Database elaboration with new parameters and indices;
- Decreasing dimensions of the interpolation grid squares;
- Adding additional economic sectors;
- Adding additional adaptation indicators

Periodic refinement of adaptation indicators

Vulnerability calculation and monitoring
LEGISLATIVE POLICY INSTRUMENTS REGARDING CC ADAPTATION

Policy planning documents:
- Latvia's long-term development perspective – up to 2030;
- flood risk assessment and management;
- agricultural risk management;
- land-use policy;
- rural development;
- territorial and spatial planning;
- Baltic Sea and Gulf of Riga coastal zone management;
- national security and civil protection system strengthening (including e.g. material reserves), etc.

Legislative acts:
- water management,
- sustainable forest management,
- protected belts and territories,
- compensations for damage in agriculture,
- invasive species distribution areal contain,
- flood risk control,
- construction standards (including building climatology), etc.
EU level:

LV level:

- Intergovernmental working group for preparing national risk assessment (2012)
- Analysis of CC risk assessment in sectors and proposals for development of adaptation system (2012)
- Ministry of Interior and State Fire and Rescue Service mapped 13 risk scenarios (causes, consequences and threats), e.g. storms, floods, forest fires, interruptions in electric power transmission and distribution systems (2015)
- Law on Civil Protection and Catastrophe Management (now draft in Saeima – national parliament - 2016)
THANK YOU FOR THE ATTENTION!

www.meteo.lv
https://twitter.com/LVGMC_Meteo
Tālāk ir rezerves slaidi par klimata izmaiņām